80	58	A	0
100	UO	쓮	u

(P	8	g	e	9	2)
7.00	**		~	_	

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Sixth Semester

Core Course - EQUILIBRIUM AND KINETICS

(Common for B.Sc. Chemistry Model II, Model II, B.Sc. Petrochemicals, B.Sc. Chemistry Environment and Water Management)

[2013 Admission onwards]

Time: Three Hours

Maximum Marks: 60

Part A

Answer all the eight questions. Each question carries 1 mark.

- 1. Write the relation between Cp and Cv.
- 2. What is inversion temperature?
- 3. Define chemical potential.
- 4. Write the relation between Kp and Kc.
- Write an example of simple cutectic system.
- 6. Give the reduced phase rule,
- 7. Write Michaelis-Menten equation.
- 8. Write the rate law for the first order reaction.

 $(8 \times 1 = 8)$

Part B

Answer any six questions.

Each question carries 2 marks.

- 9. Differentiate between reversible and irreversible process.
- 10. State and explain first law of thermodynamics.
- Entropy is regarded as a measure of disorder of the system. Justify.
- Calculate the efficiency of a Carnot engine operating between 300 K and 500 K.
- 13. Sketch and label the phase diagram of sulphur system.
- 14. Discuss the application of phase rule to desilverisation of lead.
- Explain, why the hydrolysis of an ester in the presence of dilute acid follows first order kinetics.

Turn over

- 16. At 25° C the half-life of decomposition of N_2O_3 is 5.7 hour and is independent of the initial pressure of N_2O_5 . Calculate rate constant.
- Write a note on steady state treatment.
- 18. 10 moles of an ideal gas are expanded from 3 dm³ to 18 dm³ isothermally at 450 K. Calculate the entropy change of the system.

 $(6 \times 2 = 12)$

Part C

Answer any four questions.

Each question carries 4 marks.

- 19. Explain Joule-Thomson experiment and define Joule-Thomson co-efficient.
- 20. Describe the phase diagram of acetic acid water-chloroform system.
- 21. State third law of thermodynamics. Explain its significance.
- 22. Derive Gibbs-Dahem equation.
- 23. Explain Collision theory.
- 24. Describe any two methods used to determine the order of a reaction.

 $(4 \times 4 = 16)$

Part D

Answer any two questions.

Each question carries 12 marks.

- Compare the phase diagram of ferric chloride water system and sodium sulphate water system.
- 26. What is meant by heterogenous catalysis? Explain unimolecular and bimolecular surface reactions.
- 27. (a) State Carnot's theorem.
 - (b) Derive the expression for the efficiency of a Carnot engine.
- 28. Derive Clausius-Clayperon equation.

 $(2 \times 12 = 24)$