***	-	-		-	1000
- 8	200	17	94		-
-	200	- 4	-44		
-	-				-

(Pa	-	200		431
(1 - 51	55	68	•	4

Reg. No	Ke	******	 	***
Name			 	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Sixth Semester

Core Course-SOLUTION CHEMISTRY

(Common for B.Sc. Chemistry Model I, Model II and B.Sc. Petrochemicals and B.Sc. Chemistry-Environment and Water Managmenet)

Time: Three Hours

Maximum Weight: 25

Section A

Answer all questions

		A bunch of four questions carries a weight of 1.
I.	1	A solution of two or more constituents is said to be ideal 17 it obeys — ——————————————————————————————————
	2	Hydrogen chloride solution benzene is ———.
	3	Mathematical representation of first law of Faraday is ———.
	4	The effect of electrolyte concentration on electrode potential and e.m.f. if explained by ——— equation.
П.	5	The two half cell reactions in the Daniel cell are ———.
	6	The transport number of an ion does not depend upon the ———— alone.
	7	An example for acidic buffer is ———.
	8	Colligative properties depends on ———.
III.	9	Mention one use of reverse osmosis.
	10	State Ostwald's dilution law.
	11	Hydrated ferric oxide is usually called ———.
	12	Molar conductance — on progressive dilution.
IV.	Sta	ate whether the following statements are True or False :
	13	Osmotic pressure of a solution does not depend upon the solute particles.
	14	An aqueous solutions of CuSO ₄ is basic.

- 15 Degree of dissociation of weak electrolyte can be calculates using Kohlrausch's Law.
- 16 Hg, Hg₂Cl₂(s) | KCl (aq) is not a reference electrode.

 $(4 \times 1 = 4)$

Section B

Answer any five questions. Each carries a weight of 1

- 17 Cesium chloride is more soluble in water than LiCl explain. Why?
- 18 Show that for an ideal solution $\Delta H_{mix} = 0$.
- 19 Write down Henderson equation. Explain the symbols.
- 20 Define hard and soft acids with suitable example.
- 21 How do the molar conductance of strong and weak electrolytes vary with dilution?
- 22 Sketch the general shapes of the conductometric titration curves for the following :-
 - (a) Strong acid V, strong base.
 - (b) Weak acid V_a weak base.
- 23 Define single electrode potential. Can its absolute value be determined?
- 24 What is meant by reference electrode? Give one example.

 $(5 \times 1 = 5)$

Section C

Answer any four questions. Each carries a weight of 2.

- 25 Write briefly on oxidation reduction indicators.
- 26 Calculate the E.M.F. at 298 K of the cell Mg (s) $|Mg^{2+}(0.1 \text{ m})| Ag^{+}(0.0001 \text{ in}) |Ag(s)$. Given $E^{o}Ag^{+}/Ag = 0.80 \text{ V}$; $E^{o}Mg^{2+}/Mg = -2.37 \text{ V}$.
- 27 State and explain Kohlrausch's Law and give one of its application.
- 28 The resistance of 0.05 N sodium chloride solution in a conductivity cell is found to be 203 ohms, at 18°C. The cell constant of the cell is 0.9715 cm⁻¹. Calculate the equivalent conductance of the solution.

- 29 Explain how reverse osmosis is applied in desalination of seawater.
- 30 Explain the theory of acid-base indicators.

 $(4 \times 2 = 8)$

Section D

Answer any two questions. Each carries a weight of 4.

- 31 What is meant by corrosion of metals? How is it monitored and what are the prevention method used? Explain.
- 32 What is meant by transport number? How is it determined by moving boundary method.
- 33 (a) Explain the term colligative properties with suitable example.
 - (b) Describe the principle of determining molar masses of non-volatile solutes from boiling point elevation measurements of their dilute solution.

 $(2 \times 4 = 8)$