F75	4	0	63	es.
E	1	6	O	o

(P		200		100
123	o.	œ	$\alpha =$	36.1
1.2	ca.	ᄣ	-	10.1

Reg. No	
Mama	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Sixth Semester

Core Course—SOLUTION CHEMISTRY—I

[Common for B.Sc. Chemistry Model - I, Model - II and B.Sc. Petrochemicals and B.Sc. Chemistry Environment and Water Management]

Time: Three Hours Maximum Weight: 25

Section A

Answer all questions.

Each bunch of four questions carries a weight of 1.

[.	1	Binary mixtures of n-hexane and	n-heptane	obey —	law	over	the	entire	range	of
		concentration.							and the	

		# 55 G				
9	According	to Lewis	concept an	acid	is n -	

3	Reciprocal	of	registance	ist	called	
u ·	receibinger	W	registance	113	caucu	

mail of	page of the Company of the Company	*G89700700701515	Mark Control		STATE OF THE	99 7149 719 717	12.00	VANCOUS CONTRACTOR		
4	The relation	between	Electrical	energy	and	Enthalpy	of cell	reaction	18 -	

TTO .	2	Combination of the	a torra balf calle	would result in a c	all with the	EMF.
Lhi	- 0	Companyation of tr	e two nan-cens	would result in a c	en with the	EMMED.

179	PER P P P	44 A 44	1 12 1 1111 2	1 7
13	The speed of an ion	varies with the potentia	al applied. The term	used for this is
96.1	Section to provide the section of the	The state of the s	the female and make a second	The state of the s

			6 32			200		
7	The	huffer	index	B	is	defined	as:	

III. 9 Define CST.

- 10 What is pH?
- 11 Debye-Huckel limiting law equation is -----
- 12 is an example for oxidation reduction indicator used in volumetric analysis.

IV. State whether the following statements are True or False:

- 13 In osmosis solvent molecules flow from high concentrated solution to less concentrated solution.
- 14 An aqueous solution of FeCl3 is basic.
- 15 Specific conductance is the product of conductance and resistance.
- 16 Normal hydrogen electrode also referred to as standard electrode.

 $(4 \times 1 = 4)$

Section B

Answer any five questions.

Each question carries a weight of 1.

- 17 What is meant by reverse osmosis?
- 18 Show that for an ideal solution $\Delta V_{mix} = 0$.
- 19 What is a buffer solution ? Give one example.
- 20 Give the appliation of solubility product principle.
- 21 Explain the term transport number.
- 22 How would you estimate KOH using standard oxalic acid solution conductometrically?
- 23 What is a Calomel electrode? Give the electrode reactace.
- 24 What is meant by standard electrode potential?

 $(5 \times 1 = 5)$

Section C

Answer any four questions. Each question carries a weight of 2.

- 25 Write a note on potentiometeric titration.
- 26 Calculate the emf at 25° C. of the cell $Zn(s) | Zn^{2+}(0.1 \text{ M}) | | Ag^{+}(0.1 \text{ M}) | Ag(s)$. Given $E^{\circ}Zn^{2+}/Zn = -0.76 \text{ V}$; $E^{\circ}Ag^{+}/Ag = 0.80 \text{ V}$.
- 27 Describe how conductivity measurements may be used to determine the solubility of a spraingly soluble salt in water.
- 28 The molar conductances at infinite dilution for NH_4Cl , NaOH and NaCl are 129.8, 217.4 and 108.9 ohm.⁻¹ cm.² eq.⁻¹ respectively at 29 K. The electrolytic conductivity of a 0.01 M solution of NH_4OH at 291 K is 9.33×10^{-5} ohm.⁻¹ cm.⁻¹ Calculate the degree of dissociation of NH_4OH at this dilution.
- 29 Explain Pearson's HSAB concept with suitable example.
- 30 State Raoult's law of relative lowering of vapour pressure. Show how the law can be utilized in determining the molar mass of solution.

 $(4 \times 2 = 8)$

Section D

Answer any two questions.

Each question carries a weight of 4.

31 What are ideal and non-ideal solutions? Discuss briefly the deviation of real solution from their ideal between.

- 32 What is meant by the term transport number? Explain the Hittorf's method of determining transport number.
- 33 Write note on :
 - (a) Over voltage.
 - (b) Fuel cells.

 $(2 \times 4 = 8)$