W.3	-	100	-	n
E	-	5	54	h
-Bark	-84	u	1.7	~

(Pages: 3)

Reg. No	
Name	

C.B.C.S.S. - B.Sc. DEGREE EXAMINATION, APRIL 2011

Fourth Semester

MP4 CO1—DIFFERENTIAL EQUATIONS, ABSTRACT ALGEBRA, NUMERICAL ANALYSIS

(Complementary Course to Physics/Chemistry/Petrochemical/Geology/Food Science and Quality Control/Computer Maintenance and Electronics)

Time : Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1 Find a solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$.
 - 2 What is the total differential of a function u(x, y) of two variables x and y?
 - 3 Find an integrating factor of the differential equation $\frac{dy}{dx} + y = x$.
 - 4 Give an example of a homogeneous differential equation.
- 5 Give an example of a three dimensional surface by giving its equation.
 - 6 What is the order of the partial differential equation $\left(\frac{\partial \theta}{\partial x}\right)^3 + \frac{\partial^2 \theta}{\partial t^2} = 0$.
 - 7 Form a partial differential equation by differentiating once with respect to x from the surface $x^2 + y^2 + (z c)^2 = a^2$, where a and c are arbitrary.
 - 8 Write the general form of a linear partial differential equation.
- III. 9 If $u = 3v^7 6v$, find the percentage error in u at v =if the error in v is 0.05.
 - 10 Find two values a and b such that a real root of $f(x) = x^3 x 1 = 0$ lies between a and b.
 - Name the method in which we replace the curve between $(x_0, f(x_0))$ and $(x_1, f(x_1))$ by means of the chord joining these points to find a root of f(x) = 0 in between x_0 and x_1 .
 - 12 In Newton Raphson method, what is the formula to find the (n + 1)th approximation x_{n+1} to a root of f(x) = 0 if the nth approximation x_n is known?

- IV. 13 Give an example of a group of order 9.
 - 14 Write the subgroup of \mathbb{Z}_5 generated by 2.
 - 15 How many elements are there in the group of symmetries of a square?
 - 16 Give an example of a group homomorphism from Z to 3Z.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight L

- 17 Find the general solution of the differential equation $x\frac{dy}{dx} + 2y = 3$.
- 18 Solve the differential equation $\left(\frac{dy}{dx}\right)^3 = \left(\frac{dy}{dx}\right)e^{2x}$.
- 19 Eliminate the arbitrary function f from the equation $z = xy + f(x^2 + y^2)$.
- 20 Find $\frac{\partial(F, G)}{\partial(y, z)}$ if $F = ax^2 + by^2 + cz^2 1$ and G = x + y + z 1.
- 21 Find an approximate root of $x^3 18 = 0$ using bisection method.
- 22 Find an approximate root of $\cos x = 3x 1$ using the interative method.
- 23 Find the cyclic subgroups $\langle \rho_1 \rangle$ and $\langle \mu_1 \rangle$ of S_3 .
- 24 Give an example of a vector space over the field R by properly defining addition and scalar multiplication.

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any **four** of the following questions. Each questions has weight 2.

25 Check whether the following differential equation is exact or not. If exact, solve it :-

$$(2xe^y - x\cos(xy) + 2y) dy - (y\cos(xy) - e^{2y}) dx = 0.$$

26 Solve the differential equation $(x^2 + y^2) dx = (xy - x^2) dy$.

27 Find the general solution of the differential equation:

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z.$$

28 Find the integral curves of the equations:

$$\frac{dx}{y(x+y)+az} = \frac{dy}{x(x+y)-az} = \frac{dz}{z(x+y)}.$$

- 29 Use Newton-Raphson method to find a real root of the equation $x^8 3x 5 = 0$.
- 30 Show that the intersection of the subgroups H_i of a group G for $i \in I$ is again a subgroup of G.

$$(4 \times 2 = 8)$$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

31 Solve
$$\frac{dy}{dx} + \frac{1}{x}y = 3y^3.$$

- 32 Find a real root of the equation $f(x) = x^3 2x 5 = 0$ using the method of false position.
- 33 Show that the set of all complex numbers with usual addition and multiplication is a field.

$$(2 \times 4 = 8)$$