E	G	T	0	T
4	3.3	1	Cab	л

(Pages : 2).

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Fourth Semester

Complementary Course-Physics

PHYSICAL OPTICS, LASER PHYSICS AND SUPERCONDUCTIVITY

(For B.Sc. Chemistry Model I B.Sc. Geology and B.Sc. Chemistry-Environment and Water Management)

[2013 Admission onwards]

Time : Three Hours

Maximum Marks: 60

Part A (Very Short Answer Questions)

Answer all questions.

1 mark each.

- 1. State the principle of superposition.
- 2. What is diffraction?
- 3. What do you understand by unpolarized and polarized?
- 4. Differentiate negative and positive crystals.
- 5. What are the properties of laser beams?
- 6. What is stimulated emission?
- 7. What are the applications of superconductivity?
- 8. What is the spin of Cooper pair?

 $(8 \times 1 = 8)$

Part B (Brief Answer Questions)

Answer any six questions. 2 marks each.

- 9. Explain why different colours are produced by a thin film in white light?
- 10. Define resolving power of a grating.
- 11. State and explain Malus law.
- 12. What is double refraction?
- 13. Discuss about polarization by scattering.

Turn over

- 14. How half wave and quarter wave plates are formed?
- 15. What is population inversion? How is it achieved practically?
- 16. What are the applications of laser beams?
- 17. Explain Meissner effect.
- 18. Differentiate Type I and Type II superconductors.

 $(6 \times 2 = 12)$

Part C (Problems/Derivatives/Short Essays)

Answer any four questions. 4 marks each.

- 19. Light of wavelength 5500 Å from a narrow slit is incident on a double slit. The overall separation of 5 fringes on a screen 200 cm away is 1 cm. Calculate the slit separation and the fringe width.
- In Newton's rings experiment, diameters of the 4th and 12th dark rings are 0.4 cm and 0.7 cm respectively. Deduce the diameter of the 12th dark ring.
- 21. In a plane diffraction grating, the angle of diffraction for the second order maxima for wavelength 5×10^{-5} cm is 30° . Calculate the number of lines per cm of the grating surface.
- 22. Plane polarized light passes through a quartz plate with its optic axis parallel to the faces. Calculate the least thickness of the plate for which the emergent beam will be plane polarized. Given $\mu_B = 1.5533$, $\mu_C = 1.5442$ and $\lambda = 500$ nm.
- 23. A certain Ruby laser emits 1.0 J pulses of light whose wavelength is 694 nm. What is the minimum number of Cr^{3+} ions in the Ruby?
- 24. Explain BCS theory.

 $(4 \times 4 = 16)$

Part D (Essay Questions)

Answer any two questions. 12 marks each.

- Explain with theory the determination of wavelength of monochromatic light using Newton's rings.
- 26. Explain Fresnel's diffraction at a straight edge.
- 27. (a) What is the basic principle of laser? Explain.
 - (b) Obtain Einstein's coefficients.
- 28. Explain Josephson effects in superconductors.

nil sellayê si Atarê Dez telek