E	00	(19	0
P	24	ŧο	О

(Pages: 4)

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2015

First Semester

Complementary Course-DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(Complementary Course for Physics/Chemistry/Petrochemicals/Geology, Food Science and Quality Control/Computer Maintenance and Electronics)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

1. Find
$$\lim_{x \to 5} \frac{x-5}{x^2-25}$$
.

2. If
$$g(t) = \frac{1}{t^2}$$
. Find $\frac{dy}{dt}(\sqrt{3})$.

- 3. Define the average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$.
- 4. State Rolle's theorem.
- 5. Define a critical point of a function defined on a domain D.
- 6. State the extreme value theorem.

7. If
$$f(x,y) = \ln(x+y)$$
. Find $\frac{\partial f}{\partial y}$.

- 8. State the mixed derivative theorem for partial derivatives.
- Express cosx-isinx in terms of exponential function.
- 10. What is the period of sinh(x+yi)?

 $(10 \times 1 = 10)$

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

11. Find
$$\lim_{h \to 0} \frac{\cosh - 1}{h}$$
.

Turn over

- 12. Show that the function $y = \sqrt{x}$ is not differentiable at x = 0.
- 13. Does the curve $y = x^4 2x^2 + 2$ have any horizontal tangent? If so, find the point at which such a tangent occur.
- 14. Find the point C of mean value theorem for the function $f(x) = 1 x^2$ in $0 \le x \le 2$.
- 15. Find the absolute extrema values of $g(t) = 8t t^4$ on [-2, 1].
- 16. Show that the function $k(t) = \frac{1}{1-t} + \sqrt{1+t} 3.1$ has exactly one zero in the interval (-1,1).
- 17. If $w = x^2 + y^2$, x = r s, y = r + s then express $\frac{\partial w}{\partial s}$ in terms of r and s.
- 18. If $f(x,y) = x \cos y + ye^x$. Find $\frac{\partial^2 f}{\partial y \partial x}$ at (1, 3).
- 19. Find fyxz if $f(x, y, z) = 1 2xy^2z + x^2y$
- Find the real part of the expression cosh(α+βi).
- 21. Prove that $\cosh^2 y \sinh^2 y = 1$.
- 22. Define $\sin x$ and $\cos x$ interms of exponential functions and verify the result : $\cos(x-y) = \cos x + \cos y + \sin x \sin y$.

 $(8 \times 2 = 16)$

Part C (Short Essay Questions)

Answer any six questions. Each question carries 4 marks.

- 23. Let $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$. Prove that $\lim_{x\to c} (f(x) + g(x)) = L + M$.
- 24. State the sandwich theorem, using this find :
 - (a) The horizontal asymptote of the curve $y = 2 + \frac{\sin x}{x}$.
 - (b) Find $\lim_{\theta \to 0} \sin \theta$
- 25. If $x = t + \frac{1}{t}$, $y = t \frac{1}{t}$, find $\frac{d^2y}{dx^2}$ as a function of t

- 26. State the first derivative test for the monotonic function and using this, find the critical point of f if f'(x) = (x-1)(x+2)(x-3) and the intervals in which the function is increasing or decreasing.
- 27. For what values of a, m and b does the function :

$$f(x) = \begin{cases} 3, x = 0 \\ -x^2 + 3x + a, 0 < x < 1 \\ mx + b, 1 \le x \le 2 \end{cases}$$

satisfy the hypothesis of the mean value theorem on the interval [0, 2].

- 28. If resistors R_1 , R_2 and R_3 ohms are connected in parallel to make an R-ohm resistor, the values of R can be found from $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. Find the value of $\frac{\partial R}{\partial R_2}$ when $R_1 = 30$, $R_2 = 45$, $R_3 = 90$ ohms.
- 29. Give a formula for implicit differentiation in terms of partial derivatives and use it to find $\frac{dy}{dx}$ if (a) $y^2 x^2 \sin xy = 0$; (b) $xe^y + \sin xy + y = 0$.
- 30. Express $\frac{\sin 60}{\sin \theta}$ in a series of descending powers of $\cos \theta$.
- 31. Sum to infinity the series : $\frac{1}{2}\sin\alpha + \frac{1}{2} \cdot \frac{3}{4}\sin2\alpha + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}\sin3\alpha + \dots$

 $(6 \times 4 = 24)$

Part D (Essay Questions)

Answer any two questions. Each question carries 15 marks.

- 32. (a) Show that the point (2, 4) lies on the curve $x^3 + y^3 9xy = 0$ then find the tangent and normal to the curve at (2, 4).
 - (b) Find a parametrization for the line segment with end points (-2, 1) and (3, 5).
- 33. (a) State the first derivative test for local extrema.
 - (b) Find the critical points of $f(x) = x^{4/3} 4x^{1/3}$ identify the intervals on which f is increasing and decreasing.

Turn over

(c) Find the position of a body at time t if it is falling freely with initial velocity V(0) = -3 from a height S(0) = 5 m.

34. (a) Let
$$f(x,y) = \begin{cases} 0, xy \neq 0 \\ 1, xy = 0 \end{cases}$$
 then:

- (i) Find the limit of f as (x, y) approaches to (0, 0) along the line y = x.
- (ii) Prove that f is not continuous at the origin.
- (iii) Show that both the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at the origin.
- (b) Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln S \cdot Z = 2r$.
- 35. (a) Expand $\cos^5\theta\sin^7\theta$ in a series of sines of multiples of θ .
 - (b) Prove that $\tanh(\alpha + \beta) = \frac{\tanh \alpha + \tanh \beta}{1 + \tanh \alpha \tanh \beta}$.
 - (e) Prove that $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

 $(2 \times 15 = 30)$