Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2014

First Semester

Complementary Course-DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(Complementary Course for Physics/Chemistry/Petrochemicals/Geology/ Food Science and Quality Control/Computer Maintenance and Electronics)

[2013 admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

1. Find
$$\lim_{y \to -5} \frac{y^2}{5-y}$$
.

- 2. State the chain rule for the derivative of a composite function of one variable.
- 3. Show that the derivative of a constant is zero.
- 4. Define absolute maximum of a function...
- 5. Define an increasing function.
- 6. State the Mean value theorem.
- 7. Define level surface of a function f(x, y, z).

8. Find
$$\frac{\partial f}{\partial y}$$
 if $f(x,y) = x^y$.

- 9. Show that $\cosh^2 x \sinh^2 x = 1$
- 10. What is the period of $\cosh(x+iy)$?

 $(10\times 1=10)$

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

11. Prove the limit statement $\lim_{x\to 3} (3x-7) = 5$.

Turn over

- 12. Find $\frac{dy}{dx}$ as a function of t if $x = t + \frac{1}{t}$, $y = t \frac{1}{t}$.
- 13. Find the slope of the circle $x^2 + y^2 = 2$ at the point (1, 1).
- 14. Find the absolute maximum value of $f(x) = x^2$ on [-2, 1].
- 15. Find the function f(x) whose derivative is $\sin x$ and whose graph passes through (0, 2).
- 16. Find the value of C in the mean value theorem for $f(x) = x^2 + 2x 1$ on [0, 1].
- 17. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x,y) = \frac{1}{x+y}$.
- 18. Find $\frac{dw}{dt}$ if w = xy + z, $x = \cos t$, $y = \sin t$, z = t.
- 19. Draw a tree diagram and write a chain rule for $\frac{dz}{dt}$ where z = f(x, y), x = g(t), y = h(t).
- 20. If $x = \cos \theta + i \sin \theta$, find $x^4 + \frac{1}{x^4}$ and $x^4 \frac{1}{x^4}$.
- 21. Show that $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.
- 22. Show that $\sinh^{-1} x = \log \left(x + \sqrt{x^2 + 1} \right)$.

 $(8 \times 2 = 16)$

Part C (Descriptive/Short Essay Questions)

Answer any six questions.

Each question carries 4 marks.

- 23. Show that $\lim_{x\to\infty}\frac{1}{x}=0$ and $\lim_{x\to-\infty}\frac{1}{x}=0$.
- 24. Find an equation for the tangent to the curve $y = x + \frac{2}{x}$ at (1, 3).
- 25. Find $\frac{d^2y}{dx^2}$ if $ax^2 + 2h xy + by^2 = 1$, where a, b, h are constants.

- 26. State and prove Rolle's theorem.
- 27. Show that the equation $x^3 + 3x + 1 = 0$ has exactly one real solution.
- 28. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \log s$, z = 2r
- 29. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x,y) = \frac{2y}{y + \cos x}$.
- 30. Separate into real and imaginary parts of tan(x+iy).
- 31. Expand $\sin^6 \theta$ in a series of cosines of multiples of θ .

 $(6 \times 4 = 24)$

Part D (Long Essay Questions)

Answer any two questions.

Each question carries 15 marks.

- 32. (a) Let f(x) = x+1 and $\varepsilon = 0.01$. Find a $\delta > 0$ such that for all x with $0 < |x-1| < \delta$ the inequality $|f(x)-5| < \varepsilon$ holds.
 - (b) Show that f(x) = |x| is differentiable except at x = 0.
 - (c) To position P (x, y) of a particle moving in the xy-plane is given by the equations: $x = \sqrt{t}, y = t, t \ge 0$. Identify the path traced by the particle and describe the motion.
- 33. (a) If the derivative f'(x) = 0 at each point x of an open interval (a, b), prove that f(x) = c for all x in (a, b), where c is a constant.
 - (b) Find the critical points of $f(x) = x^3 12x 5$ and identify the intervals on which f is increasing and decreasing.
 - (c) Suppose f(0) = 5 and f'(x) = 2 for all x. Must f(x) = 2x + 5 for all x? Give reasons for your answer.
- 34. (a) Find all the second order partial derivatives of $f(x, y) = x^2y + \cos y + y \sin x$.
 - (b) Find $\frac{dw}{dt}$ at t = 3, given that $w = \frac{x}{z} + \frac{y}{z}$, $x = \cos^2 t$, $y = \sin^2 t$, $z = \frac{1}{t}$.

- 9000 R
 - (c) Draw the free diagrams and chain rules for the derivatives $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for z = f(x, y) x = g(t, s), y = h(t, s).
- 35. (a) Expand $\sin^4\theta\cos^2\theta$ in a series of cosines of multiples of θ .
 - (b) If $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$, prove that $\tanh \frac{u}{2} = \tan \frac{\theta}{2}$.
 - (c) Find the sum to infinity the series:

$$c\sin\alpha + \frac{c^2}{2!}\sin 2\alpha + \frac{c^3}{3!}\sin 3\alpha + \dots$$

 $(2 \times 15 = 30)$