-	1	-	_	-
E.T	13	=	O	4
87.	6.3		ж,	434
3.4	-747	4,0	u	7.00

(Pages: 3)

Reg.	No
B7	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2013

First Semester

Complementary Course-Physics-PROPERTIES OF MATTER, MECHANICS AND PARTICLE PHYSICS

(For the subjects Chemistry and Geology)

[Prior to 2013 admissions]

Time: Three Hours

Maximum Weight: 25

Candidates can use Clark's tables and Scientific non-programmable calculators.

		Part A	A (Object	ive Type)
			wer all qu r question	uestions. s carries a weight of 1.
			Bunch	I
1.	If the d	ensity of a material increases,	the value	of the Young's modulus :
	(a)	Increases.	(b)	Decreases.
	(c)	First increases and then decr	eases.(d)	First decreases and then increases.
2,	Young'	s modulus for a plastic body is		
	(a)	Zero.	(b)	Infinite.
	(c)	1.	(d)	Finite.
3.	Poisson	n's ratio is the ratio of lateral s	train to -	
	(a)	Volume strain.	(b)	Shearing strain.
	(c)	Longitudinal strain.	(b)	None of these.
4.	The su	bstance which shows no elastic	after effe	ect is:
	(9)	Copper	(b)	Silvar

(c) Quartz.

(d) Rubber.

Bunch II

5. The potential energy of a particle executing SHM with amplitude A is maximum when the displacement is:

(a) Zero.

(b) A/2.

(c) A.

(d) A/.

6.	301	g of force constant k is cut into two stant of the longer piece :	wo piece	es whose lengths are in the ratio 1:2. What is the
	(a)	2/3k.	(b)	1/3k.
	(c)	3/2k.	(d)	3k.
7.	A parti	cle executing SHM with a frequen	icy. The	frequency with which the kinetic energy oscillates
	(a)	γ.	(b)	γ/2.
	-(c)	2γ.	(d)	Zero.
8.	For an	undamped oscillator quality fact	or Q =	
			Bunch	ш
9,	In SHI	M, the acceleration of a particle is	zero w	hen the velocity is :
	(a)	Maximum.	(b)	Half of its maximum value.
	(c)	Zero.	(d)	None of the above.
10.	Force i	n linear motion has as its analog	ue in re	otational motion :
	(a)	Torque.	(b)	Moment of inertia.
	(c)	Angular momentum.	(d)	Weight.
11.	The M	I of a sphere of radius R and mas	s M ab	out a tangent to the sphere is:
	(a)	MR ² .	(b)	2/5 MR ² .
	(c)	21/5 MR ² .	(d)	7/5 MR ² .
12.	MI of a	a disc of radius R and mass M ab	out a di	ameter as axis is:
	(a)	MR ² .	(b)	MR ² / ₂ .
	(c)	MR ² /4.	(d)	5/4 MR ² .
			Bunch	IV
13.	The M	I of a body comes into play only i	n:	
	(a)	Motion along a curved path.	(b)	Linear motion.
	(c)	In rotational motion.	(d)	None of these,
14.	When	the torque acting upon a system	ia zero,	which of the following will be constant:
	(a)	Force.	(b)	Linear Momentum.
	(c)	Angular momentum.	(d)	Impulse.
15.	In we	ak interactions, the exchange par	ticles a	re:
	(a)	Photons.	(b)	Gluons.
	(c)	Mesons.	(d)	Intermediate bosons.
16.	In gra	vitational interactions, the excha	ange pa	rticles are :
	(a)	Electrons.	(b)	Gravitons.
	(c)	Mesons.	(d)	
				$(4 \times 1 = 4)$

Part B (Short Answer Type)

Answer any five questions. Each question carries a weight of 1.

- 17. What is bending moment?
- 18. What is a flywheel?
- 19. Distinguish between Angle of twist and Angle of shear.
- 20. State and explain the theorem of perpendicular axes.
- 21. Obtain the differential equation of a particle executing SHM.
- 22. What are forced oscillations?
- 23. What are gauge particles?
- 24. Name the conservation laws in particle physics.

 $(5 \times 1 = 5)$

Part C (Short Essay/Problems)

Answer any four questions.

Each question carries a weight of 2.

- 25. Prove the theorem of perpendicular axes.
- 26. The mass of a flywheel is usually concentrated at the rim. Why?
- 27. The amplitude of a damped harmonic oscillator is reduced to half its undamped value in 200 seconds. If $w_0 = \pi$ rad/sec., what is the relaxation time and quality factor.
- 28. Derive the condition under which amplitude resonance occurs.
- 29. A wire of length 8 m. and diameter 1.5 mm. is stretched through 4 mm. by a load. Calculate the work done. Given $y = 2 \times 10^{11} \text{ N/m}.^2$
- 30. A cylindrical rod of length 1 m, and radius 1 cm, is uniformly bent into a circular arc of radius 10 m, Calculate the bending moment, Given $y = 9 \times 10^{10} \text{ N/m}.^2$

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions.

Each question carries a weight of 4.

- 31. Derive the relation for the expression at the middle of a uniform beam supported between two knife edges and loaded at the middle.
- 32. What are the fundamental interactions in nature? Give examples. Explain the quark model.
- Define SHM. Derive expressions for velocity, acceleration and total energy of a particle executing SHM.

 $(2 \times 4 = 8)$