E	8540		

(Pages: 3)

Reg.	No

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2014

Fifth Semester

Core Course - STATES OF MATTER

(Common for B.Sc. Chemistry Model I and Model II, B.Sc. Petrochemicals and B.Sc. Chemistry

Environment and Water Management)

Time : Thre	e Hours			Maximum Weight: 25		
		Sect	ion A			
I. Ansv	ver <i>ail</i> qu	estions. A bunch of four question	ons ca	rries a weight of 1 :		
1. The rate of diffusion of a gas is inversely proportional to :						
	(a)	Volume.	(b)	Mass.		
	(c)	Square root of the density.	(d)	Thickness of the container.		
2. A sphere has surface area for a given volume.						
	(a)	Maximum.	(b)	Minimum.		
	(c)	Zero.	(d)	None of these.		
3. PF5 molecule belongs to the point group:						
	(a)	C ₃ V.	(b)	C ₃ h.		
	(c)	D_2h .	(d)	D_3h .		
4.	Schottky	defect is due to :				
	(a)	Ions in interstitial positions.	(b)	Missing of ions.		
	(c)	Metal excess.	(d)	Metal deficiency.		
II. Fill i	n the bla	nks :				
5.	The second second	e showing the effect of tempera an	ture i	n the extent of a adsorption at a given pressure		
6.	6. Liquid showing same properties in all directions is called					
7.	Viscosity	implies				
8.	At the in	version temperature, there is n	10	effect.		

- III. Questions 9-12 (in this bunch of four questions, two statements are given former, an assertion which is labelled as A and the latter a reason statement labelled as E. Going through the following instructions, mark the correct choice):
 - (a) If A and E are correct and if R is the correct reason for A.
 - (b) If A and E are correct and if R is not the correct reason for A.
 - (c) If A is correct, R is not correct.
 - (d) If A is not correct, R is correct.
 - (e) If A and R are not correct.
 - 9. Assertion A: Molecular velocities increase with rise in temperature.

Reason R : Kinetic energy varies as square of velocity.

- 10. A: The viscosity of a liquid increases with increase in pressure.
 - R : This is due to decrease of number of 'holes'.
- 11. A: Schottky defect appears generally in ionic compounds.

R: $\frac{\mathbf{r}_i}{\mathbf{r}_-}$ is far below unity.

- 12. A: Liquid crystals find wide use in LCDs.
 - R: Due to the strong anisotropic optical properties of certain nematic liquid crystal.
- IV. (13-16) State whether True or False:
 - 13. Most of the industrial lubricants exist in the mesomorphic state.
 - 14. Substance permitting movement of positive 'hole' is called n-type semiconductors.
 - 15. For Hz and He compressibility factors z is always greater than one.
 - Decrease of temperature and increase of pressure both tend to decrease adsorption.

 $(4 \times 1 = 4)$

Section B

Answer any **five** questions.

Each question carries a weight of 1.

- Give the expression for root mean square velocity. Explain the symbols.
- 18. Define Collision diameter.
- 19. What is meant by Joule-Thomson effect?
- 20. What happens when oil is added to turbulent sea? Why?
- 21. Define Symmetry operation.

- 22. Distinguish between Anisotropy and Isotropy.
- 23. What are cholestoric liquid crystals? Give one example.
- 24. Name two factors which influence adsorptions.

 $(5 \times 1 = 5)$

Section C

Answer any four questions. Each question carries a weight of 2.

- What do you understand by continuity of state? Explain with the help of isotherm of carbon dioxide.
- How is Van der Waal's equation applied to the critical state? Give expression for the critical constants of a gas.
- 27. Explain the terms: Surface tension and Surface energy. How are they related to each other?
- 28. Write short note about super conductivity.
- 29. Distinguish between cubic and hexagonal close packing in three dimension in detail.
- 30. State and explain BET equation for multilayer adsorption.

 $(4 \times 2 = 8)$

Section D

Answer any two questions.

Each question carries a weight of 4.

- Derive the Van der Waal's equation of state and explain the application of it for real gas behaviour.
- 32. What are semiconductors? Explain what is n-type and p-type semiconductor. What is the effect of temperature on semiconductors?
- 33. Derive Langmuir adsorption equation. What are the postulates of Langmuir theory? Give the limitations of the isotherm.

 $(2 \times 4 = 8)$