TO.	a	0	^	0
E	Z	z	u	z

(Pages: 3)

Reg.	No
37	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2011

Fifth Semester

Core Course—STATES OF MATTER

Time :	Thre	e Hour	s		Maximum Weight : 25
ALCOHOL:	-			Section	
			Committee only		
				nswer all questions	carries a weight of 1.
1	1.	Which	has the maximum viscos	ity?	
		(a)	Water.	(b)	Glycol.
4		(c)	Glycerol.	(d)	Acetone.
	2.	A liqu	id rises in the capillary to	be is due to	
		(a)	Surface Tension.	(b)	Viscosity.
		(c)	Osmosis.	(d)	Efflusion.
	3.	A defe	ect in which equal number	r of cation a	and anion vacancies are present is known as:
		(a)	Frenkel defect.	(b)	Schottky defect.
		(c)	Metal excess defect.	(d)	Metal deficient defect.
	4.	BF ₃ n	nolecule belongs to the Po	int Group :	
		(a)	C ₃ v.	(b)	C3h.
		(c)	D ₃ d.	(d)	D ₃ h,
11.	Fill	l in the	blanks:		
	5.	Math	ematical expression of Bra	agg's law is	water being being the stay of the
	6.	In pa	cking of spheres, there ar	e number o	f vacant spaces known as ———.
	7.		erm ——— implies the p e surface of liquid or solid		xcess of concentration of any particular component ed to that in the bulk.
	8.	Math	ematical expression of RM	IS velocity	s
III.	wh	ich is L		a reason st	s, two statements are given former, an assertion atement, labelled as R. Going through the following
		(0)	If A and P are served as	A IF D In th	a assessed was son for A

- If A and R are correct and if R is the correct reason for A.
- (b) If A and R are correct and if R is not the correct reason for A.
 - (c) If A is correct, R is not the correct.
 - (d) If A is not correct R is correct.
 - (e) If A and R are not correct.

- Assertion A: For H₂ and He compressibility factor Z is always greater than one.
 Reason R: This means that gases are more compressible than expected from ideal behaviour.
- 10. A: The kinetic theory assumes that the molecules of a gas have no mutual repulsion.
 - R: This is not correct because gases liquefy at very low temperatures and high pressures.
- A.: Frenkel defects arise from the shifting of ions from their own lattice site to interstitial
 positions between lattice point.
 - R: Their presence causes a decrease in the overall density.
- 12. A: Liquid crystals find wide use in LCDS.
 - R: Due to the strongly aniosotropic optical properties of certain nomatic liquid crystals.
- IV. 13-16 State whether true or false:
 - 13 The average distance covered by a molecule between two successive collision is called collision frequency.
 - 14 For H2 and He compressibility factor Z is always greater than one.
 - 15 All linear molecules have C axis.
 - 16 Germanium is a Intrinsic semiconductor.

 $(4 \times 1 = 4)$

Section B

Answer any five questions.

Each question carries a weight of 1.

- 17 Why are liquid drops spherical? Explain.
- 18 Define coefficient of viscosity. How does it vary with temperature?
- 19 Distinguish between Critical temperature and Boyle temperature.
- 20 Write BET equation and explain the terms in it.
- 21 Explain proper and improper axes of symmetry.
- 22 Calculate the effective number of particles associated with a unit cell of face centred cubic lattice and body centred cubic lattice.
- 23 Calculate the mean free path of methane gas at 27°C and latus pressure. If the collision diameter of methane is 3.40×10^{-10} m.
- 24. Express the Poiseuille's law applied in the viscosity measurement of liquid by Oswald method.

 $(5 \times 1 = 5)$

Section C

Answer any four questions. Each question carries a weight of 2.

25. Identify symmetry elements present in $\rm H_2O$ and $\rm BF_3$ molecule and assign their Point Groups. Illustrate two properties of a mathematical Group.

E 2202

- How is van der Waals, equation applied to the critical state. Give expression for the critical constants of a gas.
- 27. What are semiconductors? Discuss on n and p type semiconductors.
- 28. What are liquid crystals? Dicuss briefly on the structure of different liquid crystals.
- 29. Distinguish between Cubic and Hexagonal close packing in three dimensions in detail.
- Write Maxwell's equation for distribution of molecular velocities. Deduce equations for average velocity, most probable velocity and RMS velocity using the equation.

 $(4 \times 2 = 8)$

Section D

Answer any two questions. Each question carries a weight of 4.

- Derive vander Waals equation for n moles of a gas. Deduce vander Waals equation in virial form and How can this be used to determine the Boyle temperature.
- 32. Briefly discuss the postulates of Langmuir adsorption theory and derive Langmuir adsorption equation. What are the limitations of the above isotherm?
- 33. Write Briefly on different types of point defects in crystals.

 $(2 \times 4 = 8)$