1075	18	177	-	4
L	1		5	1

-					-
(P	a	at	n	C	**
V.	6.16	8	90	9	die a

Reg. No	
The Control	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2015

Fifth Semester

Core Course—QUANTUM MECHANICS AND SPECTROSCOPY

(Common for B.Sc. Chemistry Model I and Model II B.Sc. Petrochemicals, B.Sc. Chemistry Environment and Water Management)

[2013 Admissions]

Time: Three Hours

Maximum: 60 Marks

Section A

Answer all questions.

Each questions carries 1 mark.

- 1. What is Compton effect?
- If 'n' denotes the quantum number and 'c' the velocity of light, the energy of a particle of mass 'm'
 in a bar of length 'l' is proportional to ———.
- For a 'e' moving in the 's' orbital its total angular momentum is ———.
- If the energy of an 'e' in the second energy level of H₂ atom is E, its value in the third energy level
 will be ———.
- 5. Rotational spectra is observed in the region of electromagnetic spectrum.
- N₂ has a nuclear spin of 1. The NMR of nitrogen has lines.
- The number of vibratinal degrees of freedom in CO₂ molecule.
- 8. The degree of degeneracy for a rigid rotor in an energy level with quantum number I is

 $(8 \times 1 = 8)$

Section B

Answer any six questions.

Each question carries 2 marks.

- 9. What are the reasons for the failure of classical mechanics?
- 10. What is an eigen function?
- 11. Draw the radial distribution curve for 2s orbitals.
- 12. Write the MO configuration of N2 molecule.
- 13. What are the selection ruels be rotational spectra?
- State Frank-Condon principle.
- 15. What you mean by a hot band?

Turn over

- 16. Explain the rule of mutual exclusion.
- 17. Why TMS is used is a standard reference in NMR spectroscopy?
- 18. What is McLafferty rearrangement?

 $(6 \times 2 = 12)$

Section C

Answer any four questions.

Each question carries 4 marks.

- Briefly explain Davisson and Germers experiment.
- 20. What are quantum numbers?
- 21. What are the basic principles of MO theory?
- 22. Explain photosensitized reaction with example.
- 23. Draw and discuss the high resolution proton NMR spectra of acetaldehyde.
- 24. Explain the instrumentation for mass spectra.

 $(4 \times 4 = 16)$

Section D

Answer any two questions. Each question carries 12 marks.

- Derive the expression for energy of particle in one-dimensional box and apply this to butadiene system.
- 26. Compare IR and Raman spectra.
- 27. (a) What is the B.E. of an electron in a hydrogen atom?
 - (b) Obtain the radius of hydrogen atom.
 - (c) Explain sinusoidal wave equation.
- 28. (a) Explain the term quantum yield.
 - (b) Basic fragmentation pattern in mass spectra.
 - (c) Draw the PE curves the bonding and antibonding molecular orbits.

 $(2 \times 12 = 24)$