Reg.	No
------	----

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2013

Fifth Semester

Core Course-CHEMISTRY OF 'D' AND 'F' BLOCK ELEMENTS

(Common for B.Sc. Chemistry Model I and Model II, B.Sc. Petrochemicals and B.Sc. Chemistry Environment and Water Management)

Time: Three Hours

* Maximum Weight : 25

Section A

		Answer all questions. A bunch of four questions carries a weight of 1.
I.	1	Densities of the transition elements are quite high due to ———.
	2	IUPAC name of K_3 [Al (C_2 O_4) ₃] is
	3	The Wittig reagent is example for ———.
	4	———— is an example for Zintle ion.
П.	5	The common oxidation state of all the lanthanides is ———.
	6	The complex ion $\left[\operatorname{Co}\left(\operatorname{NH}_3\right)_6\right]^{3+}$ shows ————————————————————————————————————
	7	——— is an example for Ziegler - Natta Catalyst.
	8	Both myoglobin and Haemoglobin are called ———.
ш.	9	$\left[\text{Co.Br}\left(\text{NH}_3\right)_5\right] \text{SO}_4 \ \text{and} \left[\text{Co} \text{SO}_4 \left(\text{NH}_3\right)_5\right] \text{Br} \ \text{are} \text{isomers}.$
	10	The geometry of $\left[\mathrm{Ni}(\mathrm{CN})_4\right]^{2-}$ is ———.
	11	Grignard reagents are generally represented as ———.
	12	In polynuclear carbonyl clusters, the metal atoms are bonded through ———— single bonds.
IV.	13	All actinide elements are ———— emitters.

14 The device used to measure paramagnetism is -

- 15 EAN of Iron in Fe (CO) is _____
- 16 A drug used in anticancer is -----

 $(4 \times 1 = 4)$

Section B

Answer any five questions. Each question carries a weight of 1.

- 17 Transition metal and their compounds have good catalytic properties. Give one compound used as catalyst.
- 18 What is a ligand?
- 19 What is the number of impaired electrons in tetrahedral [Ni(CO)4] complex?
- 20 What is Wilkinson's catalyst?
- 21 Give one example for HNCC clusters.
- 22 What are glides?
- 23 What is Hill constant?
- 24 What is actinide contraction?

 $(5 \times 1 = 5)$

Section C

Answer any four questions. Each question carries a weight of 2.

- 25 Explain the role of myoglobin.
- 26 What is metal cluster? Illustrate with suitable example.
- 27 What is Zeise's salt? Give one method of preparation and structure.
- 28 Explain the factors affecting stability of a complex.
- 29 Explain SN² substitution reaction of square planar complexes.
- 30 Explain the magnetic properties of Lanthanides.

 $(4 \times 2 = 8)$

Section D

Answer any two questions.

Each question carries a weight of 4.

- 31 Discuss carefully and concisely the splitting of d-orbitals in the case of (a) Octahedral complexes; and (b) tetrahedral complexes.
- 32 Discuss the mechanism of oxygen transport in blood.
- 33 Compare the properties of Second and Third transition series with first transition series.

 $(2 \times 4 = 8)$