-	-	-	-	arm."
20.0		-	# b	
-	THE.	-	346	3-4
10.74		•	- 1	2.5
-		-	30	Marie I

(Pages: 3)

Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

Fifth Semester

Core Course-QUANTUM MECHANICS AND SPECTROSCOPY

(Common for B.Sc. Chemistry Model I, Model II B.Sc. Petrochemicals, B.Sc. Chemistry Environment and Water Management)

[2013 Admission onwards]

Time: Three Hours

Maximum: 60 Marks

Section A

Answer all questions.

Each question carries 1 mark.

- 1. State Planks radiation law.
- 2. Wave function in quantum mechanics represents -----
- 3. The orbital angular momentum (in units of $h/2\pi$) of the \overline{e} in the 3d orbital is ———.
- The zero point energy of an ε is equal to ———.
- 5. The rotational constant B of a diatomic molecule is -----
- The chemical shift of a proton on the 'δ' scale is 4. The value on τ scale is ———.
- 7. In practical Organic Chemistry Tetramethyl silane is used mainly for ------
- The spectra resulting from changes in vibrational energy levels for the same electronic state fall in which region of the spectrum.

 $(8 \times 1 = 8)$

Section B

Answer any six questions.

Each question carries 2 marks.

- 9. State and explain Heisenberg's uncertainty principle.
- 10. Explain the concept of operators with example.
- What is the physical significance at Ψ.

Turn over

- 12. Why phosphorescence lasts for sometime even after the source of light is removed?
- 13. What is Born-Oppenheimer approximation?
- 14. What are the selection rules for IR spectra?
- 15. Explain the origin at stokes and antistokes lines in Raman Spectrum.
- 16. Explain the term dissociation energy.
- 17. What is meant by Larmor precession?
- 18. What is the basic principle of Mass spectra?

 $(6 \times 2 = 12)$

Section C

Answer any four questions. Each question carries 4 marks.

- 19. State and explain postulates of quantum mechanics.
- 20. Derive the expression for the energy of particle in a one dimensional box.
- 21. Differentiate between fluorescence and phosphorescence giving stress to their mechanism of origin.
- 22. Draw and discuss the high resolution HNMR spectra of toluene.
- Pure rotational spectrum of the CN molecule consists of a series of equally spaced lines of seperated by 3.7978 cm⁻¹. Calculate internuclear distance.
- 24. The fundamental vibrational frequency of HCl is 2890 cm⁻¹. Calculate force constant masses of

$$H = 1.673 \times 10^{-27} \text{ kg}$$
; $^{35}\text{Cl} = 58.06 \times 10^{-27} \text{ kg}$.

 $(4 \times 4 = 16)$

Section D

Answer any two.

Each question carries 12 marks.

- 25. What are quantum numbers. What is their significance?
- 26. (a) Construct the molecular orbitals of Ho+ ion.
 - (b) What are the characteristics of σ and π orbitals?

- 27. (a) Explain the origin of microwave spectra.
 - (b) How will you determine the bond length of a diatomic molecule using this spectra?
- 28. (a) What are the selection rules for electronic spectra?
 - (b) What are the basic principle of NMR spectra?
 - (c) What are spin-spin splitting and coupling constant.

 $(2 \times 12 = 24)$